Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709555

ABSTRACT

The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.

2.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317439

ABSTRACT

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

3.
Opt Express ; 31(22): 35822-35834, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-38017746

ABSTRACT

The photon spectrum from free-electron laser (FEL) light sources offers valuable information in time-resolved experiments and machine optimization in the spectral and temporal domains. We have developed a compact single-shot photon spectrometer to diagnose soft X-ray spectra. The spectrometer consists of an array of off-axis Fresnel zone plates (FZP) that act as transmission-imaging gratings, a Ce:YAG scintillator, and a microscope objective to image the scintillation target onto a two-dimensional imaging detector. This spectrometer operates in segmented energy ranges which covers tens of electronvolts for each absorption edge associated with several atomic constituents: carbon, nitrogen, oxygen, and neon. The spectrometer's performance is demonstrated at a repetition rate of 120 Hz, but our detection scheme can be easily extended to 200 kHz spectral collection by employing a fast complementary metal oxide semiconductor (CMOS) line-scan camera to detect the light from the scintillator. This compact photon spectrometer provides an opportunity for monitoring the spectrum downstream of an endstation in a limited space environment with sub-electronvolt energy resolution.

4.
Phys Rev Lett ; 131(14): 143001, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862660

ABSTRACT

Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.

5.
J Chem Phys ; 157(16): 164305, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36319419

ABSTRACT

We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.

6.
J Synchrotron Radiat ; 29(Pt 4): 957-968, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35787561

ABSTRACT

The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.

7.
Phys Chem Chem Phys ; 24(25): 15416-15427, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35707953

ABSTRACT

The structural dynamics of photoexcited gas-phase carbon disulfide (CS2) molecules are investigated using ultrafast electron diffraction. The dynamics were triggered by excitation of the optically bright 1B2(1Σu+) state by an ultraviolet femtosecond laser pulse centred at 200 nm. In accordance with previous studies, rapid vibrational motion facilitates a combination of internal conversion and intersystem crossing to lower-lying electronic states. Photodissociation via these electronic manifolds results in the production of CS fragments in the electronic ground state and dissociated singlet and triplet sulphur atoms. The structural dynamics are extracted from the experiment using a trajectory-fitting filtering approach, revealing the main characteristics of the singlet and triplet dissociation pathways. Finally, the effect of the time-resolution on the experimental signal is considered and an outlook to future experiments provided.

8.
Science ; 375(6578): 285-290, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34990213

ABSTRACT

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

9.
Annu Rev Phys Chem ; 73: 21-42, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34724395

ABSTRACT

Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a weak and passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method.


Subject(s)
Electrons , Gases
10.
Molecules ; 26(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34770877

ABSTRACT

In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster-Kronig and Auger-Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy.


Subject(s)
Lasers , Sulfur/chemistry , Thiouracil/chemistry , Electrons , Photoelectron Spectroscopy
11.
Nature ; 596(7873): 531-535, 2021 08.
Article in English | MEDLINE | ID: mdl-34433948

ABSTRACT

Water is one of the most important, yet least understood, liquids in nature. Many anomalous properties of liquid water originate from its well-connected hydrogen bond network1, including unusually efficient vibrational energy redistribution and relaxation2. An accurate description of the ultrafast vibrational motion of water molecules is essential for understanding the nature of hydrogen bonds and many solution-phase chemical reactions. Most existing knowledge of vibrational relaxation in water is built upon ultrafast spectroscopy experiments2-7. However, these experiments cannot directly resolve the motion of the atomic positions and require difficult translation of spectral dynamics into hydrogen bond dynamics. Here, we measure the ultrafast structural response to the excitation of the OH stretching vibration in liquid water with femtosecond temporal and atomic spatial resolution using liquid ultrafast electron scattering. We observed a transient hydrogen bond contraction of roughly 0.04 Å on a timescale of 80 femtoseconds, followed by a thermalization on a timescale of approximately 1 picosecond. Molecular dynamics simulations reveal the need to treat the distribution of the shared proton in the hydrogen bond quantum mechanically to capture the structural dynamics on femtosecond timescales. Our experiment and simulations unveil the intermolecular character of the water vibration preceding the relaxation of the OH stretch.

12.
Faraday Discuss ; 228(0): 555-570, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33566045

ABSTRACT

We present the first investigation of excited state dynamics by resonant Auger-Meitner spectroscopy (also known as resonant Auger spectroscopy) using the nucleobase thymine as an example. Thymine is photoexcited in the UV and probed with X-ray photon energies at and below the oxygen K-edge. After initial photoexcitation to a ππ* excited state, thymine is known to undergo internal conversion to an nπ* excited state with a strong resonance at the oxygen K-edge, red-shifted from the ground state π* resonances of thymine (see our previous study Wolf, et al., Nat. Commun., 2017, 8, 29). We resolve and compare the Auger-Meitner electron spectra associated both with the excited state and ground state resonances, and distinguish participator and spectator decay contributions. Furthermore, we observe simultaneously with the decay of the nπ* state signatures the appearance of additional resonant Auger-Meitner contributions at photon energies between the nπ* state and the ground state resonances. We assign these contributions to population transfer from the nπ* state to a ππ* triplet state via intersystem crossing on the picosecond timescale based on simulations of the X-ray absorption spectra in the vibrationally hot triplet state. Moreover, we identify signatures from the initially excited ππ* singlet state which we have not observed in our previous study.

13.
Sci Rep ; 11(1): 505, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436816

ABSTRACT

Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N[Formula: see text] molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.

14.
Commun Chem ; 4(1): 119, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-36697819

ABSTRACT

Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.

15.
Phys Chem Chem Phys ; 23(2): 1308-1316, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33367391

ABSTRACT

Electron scattering on liquid samples has been enabled recently by the development of ultrathin liquid sheet technologies. The data treatment of liquid-phase electron scattering has been mostly reliant on methodologies developed for gas electron diffraction, in which theoretical inputs and empirical fittings are often needed to account for the atomic form factor and remove the inelastic scattering background. In this work, we present an alternative data treatment method that is able to retrieve the radial distribution of all the charged particle pairs without the need of either theoretical inputs or empirical fittings. The merits of this new method are illustrated through the retrieval of real-space molecular structure from experimental electron scattering patterns of liquid water, carbon tetrachloride, chloroform, and dichloromethane.

16.
Science ; 368(6493): 885-889, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32439793

ABSTRACT

Simultaneous observation of nuclear and electronic motion is crucial for a complete understanding of molecular dynamics in excited electronic states. It is challenging for a single experiment to independently follow both electronic and nuclear dynamics at the same time. Here we show that ultrafast electron diffraction can be used to simultaneously record both electronic and nuclear dynamics in isolated pyridine molecules, naturally disentangling the two components. Electronic state changes (S1→S0 internal conversion) were reflected by a strong transient signal in small-angle inelastic scattering, and nuclear structural changes (ring puckering) were monitored by large-angle elastic diffraction. Supported by ab initio nonadiabatic molecular dynamics and diffraction simulations, our experiment provides a clear view of the interplay between electronic and nuclear dynamics of the photoexcited pyridine molecule.

17.
Phys Rev Lett ; 124(11): 113002, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242685

ABSTRACT

Intermolecular processes offer unique decay mechanisms for complex systems to internally relax. Here, we report the observation of an intermolecular Coulombic decay channel in an endohedral fullerene, a holmium nitride complex (Ho_{3}N) embedded within a C_{80} fullerene, between neighboring holmium ions, and between the holmium complex and the carbon cage. By measuring the ions and the electrons in coincidence after XUV photoabsorption, we can isolate the different decay channels, which are found to be more prevalent relative to intra-atomic Auger decay.

18.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31793561

ABSTRACT

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

19.
J Phys Chem Lett ; 10(21): 6536-6544, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31589459

ABSTRACT

The advent of ultrashort soft X-ray pulse sources permits the use of established gas-phase spectroscopy methods to investigate ultrafast photochemistry in isolated molecules with element and site specificity. In the present study, we simulate excited-state wavepacket dynamics of a prototypical process, the ultrafast photodissociation of methyl iodide. Using the simulation, we calculate time-dependent excited-state carbon edge photoelectron and Auger electron spectra. We observe distinct signatures in both types of spectra and show their direct connection to C-I bond dissociation and charge rearrangement processes in the molecule. We demonstrate at the CH3I molecule that the observed signatures allow us to map the time-dependent dynamics of ultrafast photoinduced bond breaking with unprecedented detail.

20.
J Chem Phys ; 151(10): 104308, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521092

ABSTRACT

We have investigated the ionization and fragmentation of a metallo-endohedral fullerene, Sc3N@C80, using ultrashort (10 fs) x-ray pulses. Following selective ionization of a Sc (1s) electron (hν = 4.55 keV), an Auger cascade leads predominantly to either a vibrationally cold multiply charged parent molecule or multifragmentation of the carbon cage following a phase transition. In contrast to previous studies, no intermediate regime of C2 evaporation from the carbon cage is observed. A time-delayed, hard x-ray pulse (hν = 5.0 keV) was used to attempt to probe the electron transfer dynamics between the encapsulated Sc species and the carbon cage. A small but significant change in the intensity of Sc-containing fragment ions and coincidence counts for a delay of 100 fs compared to 0 fs, as well as an increase in the yield of small carbon fragment ions, may be indicative of incomplete charge transfer from the carbon cage on the sub-100 fs time scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...